If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+18w-129=0
a = 2; b = 18; c = -129;
Δ = b2-4ac
Δ = 182-4·2·(-129)
Δ = 1356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1356}=\sqrt{4*339}=\sqrt{4}*\sqrt{339}=2\sqrt{339}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{339}}{2*2}=\frac{-18-2\sqrt{339}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{339}}{2*2}=\frac{-18+2\sqrt{339}}{4} $
| v−669=-18 | | -14+2y+4=4 | | j-81/5=2 | | 5(x+7)-(-6x+7)=-8 | | x3-3x2-16x=-48 | | -(y+34)=-17 | | -(7-4x)=9-4x | | 14+2g=48 | | -2(x+3)=2x-4 | | (4x-7)=(5x-15) | | 11(x+4)-2(x-3)=4(x-4)+4(x-3) | | 17s=17 | | 5r+2=2r+5 | | .8m-m+3.74=1.5 | | f(6)=6-3 | | 17x-14=80 | | 13-2k=37 | | 2(x+2)-×=3(×-1)+9 | | 3=n/14 | | 1.02x=33,660 | | 10=43-|7p+12| | | -123-12x=-5x+87 | | -9-22s=18 | | 2/5a+14=18 | | 3.4x+1.5=15.5 | | 1/2x+x-35+x-46+x=360 | | 10-3x=-52 | | (14x+4)+16x-4)=180 | | -4(3m+5)=-2( | | H(t)=-16t2+5184 | | M-7m=24 | | 5m=12m+1.24-7m |